
A Scalable Architecture
for Reprioritizing Ordered

Parallelism
Gilead Posluns, Yan Zhu, Guowei Zhang, Mark C. Jeffrey

ISCA 2022

2

Ordered algorithms use priority
schedules

Priority schedules accelerate convergence

Priority schedules are correct

Dijkstra’s SSSP
Residual Belief Propagation

Breadth First Search

KCore
Set Cover

Minimum Spanning Forest

Maximal Independent Set

Priority schedules are powerful, but hard to parallelize

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)

3

Hive parallelizes priority updates
Hive builds on Swarm to provide a parallel priority update operation in
speculative task-parallel hardware

Hive speculates eagerly on data, control, and scheduler dependences

Hive achieves >100x speedup over parallel software, and up to 2.8x
over prior speculative hardware at 256 cores

4

Understanding Priority
Updates

5

PriorityQueue pq;
for (int v: G.V)
 pq.enqueue(v, G.degree[v])
while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 pq.decrementPrio(nbr)
}}

KCore requires priority updates

B

A
C

F

E
D

Task Graph

Priority = Remaining Degree
1 2 3
F
E

D
C

B
A

DTask
DependenceInput

Graph

Max core of a vertex ≈ “importance” [Malliaros et al. VLDB 29]

To find: repeatedly remove lowest degree vertex

2

2
2

1

1
1

C

6

Where’s the parallelism in KCore?
• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

• Speculation [Blelloch et al. PPoPP’12][Jeffrey et al. MICRO’15]

• Always finds parallelism
• Maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

Task
Graph

1 2 3
F
E

D
C

B
A
C

D

Task
Dependence

Our goal is to support priority updates in speculative parallel hardware

Swarm’s execution model does not support priority updates

Swarm[Jeffrey et al. MICRO’15] speculates without
updates

Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order
• Scheduler is only accessed with enqueues

7

swarm::enqueue(
fn, //what to do
ts, //when to do it
args //what to do it with);

while (!pq.empty())
task, ts = pq.dequeueMin()
task(ts)

8

Swarm KCore is inefficient (i.e., without
updates)PriorityQueue pq;

int[] prios;
for (int v: G.V) {
 prios[v] = G.degree[v];
 pq.enqueue(v, prios[v]);
}
while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 if (prios[v] < prio) continue;
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (prios[nbr] > prio) {
 prios[nbr]--;
 pq.enqueue(nbr, prios[nbr])
}}

Manual priority tracking

Early exit for moot tasks

Tasks that exit early are moot: they might as well not run at all

9

Updateable schedules are efficient

B

A
C

F

E
D

Input graph

Updateable Task GraphSwarm Task Graph

1 2 3
F
E

D
C

B
A
C

D

Task
Dependence

Priority = Remaining Degree
1 2 3
F
E

D
C

B
A
C

D

D D

Priority = Remaining Degree

Updates change
priority of a task

“Updates”
enqueue a
new Task

Swarm runs Moot tasks, but they might as well not run at all

Enqueue-only schedule has 3 more tasks than updateable schedule

10

Moot tasks outnumber useful
dequeues

M
oo

t T
as

ks
/U

se
fu

l T
as

k 100

10

1

KCore
Set Cover

BFS SSSP MSF MIS RBP
Most tasks are moot (useless work in Swarm)

11

The Hive Execution Model

12

Understanding Hive tasks and
objects

void removeV(int v, Timestamp ts) {
 coreness[v] = ts;
 for (int nbr : G.edges[v]) {
 Timestamp prev = hive::getTS(nbr);
 if (prev > ts)
 hive::update(&removeV, nbr, prev-1);
}}

A

B

C

D

E

F

B

A
C

F

E
D

Object

Timestamp

Task
Function

Object Table

2
3
3
1
1

2

Update binds a task to an object and schedules it to run

13

void removeV(int v, Timestamp ts) {
 coreness[v] = ts;
 for (int nbr : G.edges[v]) {
 Timestamp prev = hive::getTS(nbr);
 if (prev > ts)
 hive::update(&removeV, nbr, prev-1);
}}

Updating an occupied Hive object
A

B

C

D

E

F

B

A
C

F

E
D

Object Table

2
3
3
1
1

2
E

E

E

D

D
D

3

2

Hive doesn’t waste time or space on moot tasks

14

Benchmark Increment UpdateMin Cancel Update
KCore 

Set Cover  

Astar 

Breadth First Search 

SSSP 

Minimum Spanning Forest  

Maximal Independent Set 

Maximal Matching 

Residual Belief Propagation 

Hive supports many programming
patterns

No Priority Queue in Sequential Implementation

15

Parallelizing Priority
Updates

16

Hive speculates to run tasks in
parallel
For each task, Hive speculates that:
• Eager data speculation: Predecessors have already performed their writes

• Eager control speculation: Its parent will not abort

• Eager scheduler speculation: It will not be replaced by an update
The same as Swarm [Jeffrey et al. MICRO’15]

17

Priority updates are scheduler
dependences
• The scheduler dependence is old
• Found in self-modifying code[Wilkes and Renwick. ‘49]

• Created by priority updates
• When a task replaces a later-scheduled task, it creates a scheduler dependence

• Can be predicated into data and control dependences
• Moot tasks are like predicated instructions in straight-line code

STR R5, [PC,
#4]
ADD R1, R1, R1

Updates have a different dependence, they need different speculation

18

Scheduler speculation:
Task versioning and Mootness
detection
• Maintain multiple versions of each task
• 1 for each speculative update + up to 1 non-speculative

• 1 task version is speculatively valid, all others are speculatively Moot
• Speculatively Moot task versions are not runnable

• When Mootness becomes non-speculative, discard the Moot version

• Mootness can detected by comparing timestamps of parents

Hive avoids running moot tasks and reduces their speculative state

19

Hive extends the Swarm
architecture

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
em

 /
 IO

Mem / IO

M
em

 / IO

Tile

Commit
queue

Task queue

Task send
buffer

Object map

Task unit structures

Core Core Core Core

L1I/D L1I/D L1I/D L1I/D

L3 & Dir BankRouter

Tile organization

L2
GVT Arb.

Node

Task unit

Memory

Hive
Object Table

9% Task Unit Area Increase
3% Area of a Nehalem Processor

+20B

A
B
C
D
E
F

20

Evaluation

21

Methodology
Event-driven, Pin-based Simulator
 Scalability experiments up to 256 cores

• Smaller systems have fewer tiles

9 applications: KCore, Setcover, astar,
BFS, SSSP, MSF, MIS, MM, RBP

64 Tiles, 256 Cores

Mem / IO

M
em

 /
 IO

Mem / IO

M
em

 / IO

32kB L1 per core
1MB L2 per tile
256MB LLC
4 In-order, single-issue
 scoreboarded cores/tile
64 Task Queue entries/core
16 Commit Queue entries/core

22

Software struggles to scale beyond
100c

Sp
ee

du
p

Sp
ee

du
p

System Size System Size System Size System Size

Parallel
SW

Swarm
Hive

23

Swarm scales well sometimes
Sp

ee
du

p
Sp

ee
du

p

Parallel
SW

Swarm
Hive

System Size System Size System Size System Size

24

Parallel
SW

Swarm
Hive

Hive is up to 2.8x faster than Swarm

Hive is faster than Swarm
Sp

ee
du

p
Sp

ee
du

p

System Size System Size System Size System Size

2.8x

25

Breaking down Hive vs. Swarm at
256 cores

26

Hive does less work

40%

27

Hive reduces queue pressure

28

Conclusions and Q+A
• Priority updates are useful operations for ordered algorithms
• The scheduler dependences created by these updates require

task versioning and mootness detection for speculation
• Hive extracts parallelism by speculating on data, control, and

scheduler dependences

Gilead Posluns, Yan Zhu, Guowei Zhang, Mark C. Jeffrey
ISCA 2022

29

Extra Slides

30

Implementing KCore With Only
Enqueues

PriorityQueue pq;
for (int v: G.V)
 pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

31

Implementing KCore With Only
Enqueues

32

Implementing KCore With Only
Enqueues

33

Implementing KCore With Only
Enqueues

34

35

36

The Scheduler
Dependence

37

Dependences

F D X M W

Register File
Program Counter

Memory System

38

Dependences: Data

F D X M W

Register File

Memory System

ADD R1, R0,
#5
ADD R1, R1,
R1

STR R1, [R0]
LD R1, [R0]

Program Counter

39

Dependences: Data

F D X M W

Register File

Memory System

Program Counter

40

Dependences: Control

F D X M W

Register File

Memory System

BEQ R1, #0
LABEL
ADD R1, R1, R1

Program Counter

41

Dependences: Control

F D X M W

Register File

Memory System

Program Counter

42

Dependences: Scheduler

F D X M W

Register File

Memory System

STR R5, [PC,
#4]
ADD R1, R1, R1

Program Counter

43

Dependences: Scheduler

F D X M W

Register File

Memory System

Program Counter

44

Where's the parallelism in Kcore?

2

2

2

1

1

1

PriorityQueue pq;
for (int v: G.V)
 pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

45

Hive Speculates on Update
Operations
Hive speculates that all
update calls will
commit.

Hive uses eager Task
versioning.

46

Detecting scheduler dependences
• Each new Task version is sent to a tile based on its Object
• When a Task Unit receives a new Task version, it checks for other

versions with the same Object
• 2 Task versions with the same Object are a potential Scheduler

Dependence
• The Task Unit compares the VTs of the Tasks and their parents to

determine which, if any, is Moot.

Scheduler Dependencies Are Cheap To Detect and Handle

47

KCore uses priority updates

2

2

2

1

1

1

PriorityQueue pq;
for (int v: G.V)
 pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

Prio = 1Prio = 1Prio = 2

The Swarm Architecture[Jeffrey et al, MICRO
‘15]

Task-Based Execution Model

1
1

3
1

2
2

2

3

2

49

Hive tasks and objects
• A Hive program is composed of Tasks and Objects
• Tasks are like Swarm tasks
• Objects are how a Hive program queries and updates tasks

hive::update(
fn, //what to do
oid, //what to do it to
ts, //when to do it
args //what to do it with);

50

Hive objects contain tasks
• Hive Objects are containers for Tasks
• An Object contains up to one Task, or a Timestamp where a Task used to be

• Hive Programs call init to create a set of objects, which are initially
empty
• Once created, Objects are identified by an object ID (oid) from 0 to n

hive::init<flags>(n /*number of objects to create*/)

51

Binding Hive tasks to objects
• Instead of enqueue, Hive programs can call update to bind a Task

to an Object.
• Hive programs can also call getTS

to retrieve the Timestamp
of the Task last bound to
an Object

hive::update(
fn, //what to do
oid, //what to do it to
ts, //when to do it
args //what to do it with);

Timestamp ts = getTS(oid);

52

Updating a Hive task using its object
binding
• When a Hive program calls update on an Object with a Task

already bound to it
• The old Task is replaced by the new one
• The old Task is destroyed

• This allows a Hive program to
update a Task many
times, but only execute
it once.

hive::update(
fn, //what to do
oid, //what to do it to
ts, //when to do it
args //what to do it with);

53

The scheduler dependence is
distinct

Scheduler

Control

Data
ADD R0,
#5R1
ADD R1,
R1R1

STR R5[PC,
#4]
ADD R1, R1R1

BEQ R1,
#0LABEL
ADD R1, R1R1

Time

Task
Graphs

Task
Dependence

Converting Scheduler Dependences to Data/Control Is Like Predication

54

Hive recognizes speculatively moot
tasks
Hive speculates that all
update calls will
commit.

Hive uses eager Task
versioning.

A

Task State
A Running

55

Hive recognizes speculatively moot
tasks

B

A Task State
A Moot
B Running

56

Hive recognizes speculatively moot
tasks

C

AB
Task State

A Moot
B Moot
C Running

57

Hive discards moot tasks as early as
possible

C

AB
Task State

A Moot
B Moot
C Running

58

Hive discards moot tasks as early as
possible

C

AB
Task State

A Moot
B Moot
C Running

59

Hive discards moot tasks as early as
possible

C

B
Task State

B Moot
C Running

Moot Tasks Can Be Dropped Without Ever Attempting To Run

60

Hive adds little area over Swarm

Memory

61

The scheduler dependence is
distinct

Scheduler

1
1 21

2
2

Control
Data

Priority

Useful
Task

1
1 21

2
2

2 3
3

Swarm-like
Queue

Updateable
Queue

Priority

Moot
Task

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 if (prios[v] < prio) continue;
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (prios[nbr] > prio) {
 prios[nbr]--;
 pq.enqueue(nbr, prios[nbr])
}}

CMP R1, #0
ADDEQ R2,R2R2
ADDNE R2,R3R2

Predication converts scheduler dependences to data/control

62

Task versioning enables schedule
speculation

O2
O3

O5

O4
O6O0

3

1 1

32

Useful
Task

Moot
Task

Object Table

Task QueueWhen an update arrives
at a tile, lookup by
Object ID and determine
speculative mootness

update(removeV, O1, 1, NULL)

3
2
1New Task

update(removeV, O1, 2, NULL)
21

O1
Task versioning requires a single set of timestamp comparisons on arrival

Moot tasks are discarded before they would have committed if they ran

63

Converting sequential code to Hive
is simple

PriorityQueue pq;
for (int v: G.V)
 pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

void removeV(int v, Timestamp ts) {
 coreness[v] = ts;
 for (int nbr : G.edges[v]) {
 Timestamp prev = hive::getTS(nbr);
 if (prev > ts)
 hive::update(&removeV, nbr, prev-1);
}}

int main() {
 hive::init(G.n)
 for (int v: G.V)
 hive::update(&removeV, v, G.degree[v]);
 hive::run();
}

64

Hive supports priority updates
• Hive programs contain Tasks and Objects
• Hive Tasks contain a function ptr, timestamp, and arguments
• Tasks appear to execute in Timestamp order

• Hive Objects are containers for Tasks
• An Object holds up to 1 Task

hive::update(
fn, //what to do
oid, //what to do it to
ts, //when to do it
args //what to do it with);

Object Table

O2
O3

O5

O4
O6O0

A

hive::update(A, O1, 1, NULL)

65

Hive supports priority updates
When a Hive Task updates an Object with a Task already bound, the
old Task is discarded and never runs

Object Table

O2
O3

O5

O4
O6O0

B

hive::update(A, O1, 1, NULL)hive::update(B, O1, 2, NULL)

A
A

Hive’s abstract PQ has been updated to contain Task B instead of Task A

66

Priority queues are hard to
parallelize
3 Techniques:
• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Very effective when there is a lot of work per barrier
• Close to sequential when there is little work between barriers

• Relaxed [Aksenov et al. Neurips’20] [Dadu et al. ISCA’21]

• Can always find parallelism
• Not always applicable, and loses efficiency as it scales

• Speculation [Blelloch et al. PPoPP’12] [Jeffrey et al. MICRO’15]

• Always finds parallelism and maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

67

KCore requires priority updates

2

2
2

1

1
1

Task
Graph

Priority = Remaining Degree
1 2 3

1
1

3
3

2
2
2

1

Task

Dependence

Input
Graph

Maximum core of a vertex ≈ “importance”
To find: repeatedly remove lowest degree vertex
3 Techniques to extract parallelism:
• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Very effective when there is a lot of work per barrier
• Close to sequential when there is little work between

barriers

• Relaxed [Aksenov et al. Neurips’20] [Dadu et al. ISCA’21]

• Can always find parallelism
• Not always applicable, and loses efficiency as it scales

• Speculation [Blelloch et al. PPoPP’12] [Jeffrey et al. MICRO’15]

• Always finds parallelism and maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

68

Updateable priority queues are
smaller

1

1

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 if (prios[v] < prio) continue;
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (prios[nbr] > prio) {
 prios[nbr]--;
 pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

3

1
1
2
2

3

1
1
2
2
3
3

Swarm-Like
Priority
Queue 2

Updateable
Priority
Queue

1

1

69

Updateable priority queues are
smaller

1

1
1

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 if (prios[v] < prio) continue;
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (prios[nbr] > prio) {
 prios[nbr]--;
 pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

1
2
2
3

1
2
2
2
3
3

Swarm-Like
Priority
Queue

2
Updateable
Priority
Queue2

70

Updateable priority queues are
smaller

2

2
2

1

1
1

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 if (prios[v] < prio) continue;
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (prios[nbr] > prio) {
 prios[nbr]--;
 pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

2
2
2

2
2
2
2
3
3

Updateable
Priority
Queue

Swarm-Like
Priority
Queue

71

Updateable priority queues are
smaller

2

2
2

1

1
1

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 if (prios[v] < prio) continue;
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (prios[nbr] > prio) {
 prios[nbr]--;
 pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
 int v, int prio = pq.dequeueMin();
 coreness[v] = prio;
 for (int nbr : G.edges[v])
 if (pq.getPrio(nbr) > prio)
 pq.decrementPrio(nbr);
}

Swarm-Like
Priority
Queue

Updateable
Priority
QueueEarly exiting tasks are Moot: they might as well not run at all

2
3
3

72

Hive provides ordered tasks with
updates
• Hive programs contain Tasks and Objects
• Hive Tasks contain a function ptr, timestamp, and arguments
• Tasks appear to execute in Timestamp order

• Hive Objects are containers for Tasks
• An Object holds up to 1 Task

hive::update(
fn, //what to do
oid, //what to do it to
ts, //when to do it
args //what to do it with); Object Table

Object fn ts args

O0 NULL

O1 A 0 NULL

O2 A 1 NULL

O3 B 5 1,2

O4 NULL

O5 A 2 NULL

O6 NULL

hive::update(&B, O3, 5, 1, 2);

hive::update(&A, O1, 0);

73

Hive provides ordered tasks with
updates
When a Hive Task updates an Object with a Task already bound, the
old Task is discarded and never runs

Object Table

hive::update(B, O2, 2, 0, 1)
Object fn ts args

O0 NULL

O1 A 0 NULL

O2 A 1 NULL

O3 B 5 1,2

O4 NULL

O5 A 2 NULL

O6 NULL

Hive’s schedule can be updated, and replaced tasks do not run

O2 B 2 0,1

O2 A 1 NULL

74

See the paper for…
• A formal scheduler dependence definition
• The relation used to determine Mootness
• Recovery from Mootness misspeculation
• Detecting Mootness in a virtualized queue
• Object table implementation
• And more…

	A Scalable Architecture for Reprioritizing Ordered Parallelism
	Ordered algorithms use priority schedules
	Hive parallelizes priority updates
	Understanding Priority Updates
	KCore requires priority updates
	Where’s the parallelism in KCore?
	Swarm[Jeffrey et al. MICRO’15] speculates without updates
	Swarm KCore is inefficient (i.e., without updates)
	Updateable schedules are efficient
	Moot tasks outnumber useful dequeues
	The Hive Execution Model
	Understanding Hive tasks and objects
	Updating an occupied Hive object
	Hive supports many programming patterns
	Parallelizing Priority Updates
	Hive speculates to run tasks in parallel
	Priority updates are scheduler dependences
	Scheduler speculation: Task versioning and Mootness detection
	Hive extends the Swarm architecture
	Evaluation
	Methodology
	Software struggles to scale beyond 100c
	Swarm scales well sometimes
	Hive is faster than Swarm
	Breaking down Hive vs. Swarm at 256 cores
	Hive does less work
	Hive reduces queue pressure
	Conclusions and Q+A
	Extra Slides
	Implementing KCore With Only Enqueues
	Implementing KCore With Only Enqueues (2)
	Implementing KCore With Only Enqueues (3)
	Implementing KCore With Only Enqueues (4)
	Slide 34
	Slide 35
	The Scheduler Dependence
	Dependences
	Dependences: Data
	Dependences: Data (2)
	Dependences: Control
	Dependences: Control (2)
	Dependences: Scheduler
	Dependences: Scheduler (2)
	Where's the parallelism in Kcore?
	Hive Speculates on Update Operations
	Detecting scheduler dependences
	KCore uses priority updates
	The Swarm Architecture[Jeffrey et al, MICRO ‘15]
	Hive tasks and objects
	Hive objects contain tasks
	Binding Hive tasks to objects
	Updating a Hive task using its object binding
	The scheduler dependence is distinct
	Hive recognizes speculatively moot tasks
	Hive recognizes speculatively moot tasks (2)
	Hive recognizes speculatively moot tasks (3)
	Hive discards moot tasks as early as possible
	Hive discards moot tasks as early as possible (2)
	Hive discards moot tasks as early as possible (3)
	Hive adds little area over Swarm
	The scheduler dependence is distinct (2)
	Task versioning enables schedule speculation
	Converting sequential code to Hive is simple
	Hive supports priority updates
	Hive supports priority updates (2)
	Priority queues are hard to parallelize
	KCore requires priority updates (2)
	Updateable priority queues are smaller
	Updateable priority queues are smaller (2)
	Updateable priority queues are smaller (3)
	Updateable priority queues are smaller (4)
	Hive provides ordered tasks with updates
	Hive provides ordered tasks with updates (2)
	See the paper for…

