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Ordered algorithms use priority 
schedules

Priority schedules accelerate convergence

Priority schedules are correct

Dijkstra’s SSSP
Residual Belief Propagation

Breadth First Search

KCore
Set Cover

Minimum Spanning Forest

Maximal Independent Set

Priority schedules are powerful, but hard to parallelize

pq = init();
while (!pq.empty())

task, ts = pq.dequeueMin()
task(ts)
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Hive parallelizes priority updates
Hive builds on Swarm to provide a parallel priority update operation in 
speculative task-parallel hardware

Hive speculates eagerly on data, control, and scheduler dependences

Hive achieves >100x speedup over parallel software, and up to 2.8x 
over prior speculative hardware at 256 cores
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Understanding Priority 
Updates 
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PriorityQueue pq;
for (int v: G.V) 
  pq.enqueue(v, G.degree[v])
while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    pq.decrementPrio(nbr)
}}

KCore requires priority updates
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Priority = Remaining Degree
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Max core of a vertex ≈ “importance” [Malliaros et al. VLDB 29]

To find: repeatedly remove lowest degree vertex
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Where’s the parallelism in KCore?
• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Effective when many tasks per barrier
• Nearly sequential when few tasks per barrier

• Relaxed [Khan et al HPCA’22] [Yesil et al. SC’19] [Dadu et al. ISCA’21]

• Can always find parallelism
• loses efficiency as it scales
• Not always correct

• Speculation [Blelloch et al. PPoPP’12][Jeffrey et al. MICRO’15]

• Always finds parallelism
• Maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates

Task 
Graph
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Our goal is to support priority updates in speculative parallel hardware



Swarm’s execution model does not support priority updates

Swarm[Jeffrey et al. MICRO’15] speculates without 
updates

Task-Based Execution Model
• Programs consist of timestamp-ordered tasks
• Tasks appear to execute in timestamp order
• Scheduler is only accessed with enqueues 
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swarm::enqueue(
fn,  //what to do
ts,  //when to do it
args //what to do it with);

while (!pq.empty())
task, ts = pq.dequeueMin()
task(ts)
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Swarm KCore is inefficient (i.e., without 
updates)PriorityQueue pq;

int[] prios;
for (int v: G.V) {
  prios[v] = G.degree[v];
  pq.enqueue(v, prios[v]);
}
while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  if (prios[v] < prio) continue;
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    if (prios[nbr] > prio) {
      prios[nbr]--;
      pq.enqueue(nbr, prios[nbr])
}}

Manual priority tracking

Early exit for moot tasks

Tasks that exit early are moot:  they might as well not run at all
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Updateable schedules are efficient

B

A
C

F

E
D

Input graph
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Priority = Remaining Degree

Updates change 
priority of a task 

“Updates” 
enqueue a 
new Task 

Swarm runs Moot tasks, but they might as well not run at all

Enqueue-only schedule has 3 more tasks than updateable schedule
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Moot tasks outnumber useful 
dequeues

M
oo

t T
as

ks
/U

se
fu

l T
as

k 100

10

1

KCore
Set Cover

BFS SSSP MSF MIS RBP
Most tasks are moot (useless work in Swarm)
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The Hive Execution Model
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Understanding Hive tasks and 
objects

void removeV(int v, Timestamp ts) {
  coreness[v] = ts;
  for (int nbr : G.edges[v]) {
    Timestamp prev = hive::getTS(nbr);
    if (prev > ts)
      hive::update(&removeV, nbr, prev-1);
}}
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Object Table
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Update binds a task to an object and schedules it to run
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void removeV(int v, Timestamp ts) {
  coreness[v] = ts;
  for (int nbr : G.edges[v]) {
    Timestamp prev = hive::getTS(nbr);
    if (prev > ts)
      hive::update(&removeV, nbr, prev-1);
}}

Updating an occupied Hive object 
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Hive doesn’t waste time or space on moot tasks 
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Benchmark Increment UpdateMin Cancel Update
KCore 

Set Cover  

Astar 

Breadth First Search 

SSSP 

Minimum Spanning Forest  

Maximal Independent Set 

Maximal Matching 

Residual Belief Propagation 

Hive supports many programming 
patterns

No Priority Queue in Sequential Implementation
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Parallelizing Priority 
Updates



16

Hive speculates to run tasks in 
parallel
For each task, Hive speculates that:
• Eager data speculation: Predecessors have already performed their writes

• Eager control speculation: Its parent will not abort

• Eager scheduler speculation: It will not be replaced by an update
The same as Swarm [Jeffrey et al. MICRO’15] 
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Priority updates are scheduler 
dependences
• The scheduler dependence is old
• Found in self-modifying code[Wilkes and Renwick. ‘49]

• Created by priority updates
• When a task replaces a later-scheduled task, it creates a scheduler dependence

• Can be predicated into data and control dependences
• Moot tasks are like predicated instructions in straight-line code

STR R5, [PC, 
#4]
ADD R1, R1, R1

Updates have a different dependence, they need different speculation
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Scheduler speculation:
Task versioning and Mootness 
detection
• Maintain multiple versions of each task
• 1 for each speculative update + up to 1 non-speculative

• 1 task version is speculatively valid, all others are speculatively Moot
• Speculatively Moot task versions are not runnable

• When Mootness becomes non-speculative, discard the Moot version

• Mootness can detected by comparing timestamps of parents

Hive avoids running moot tasks and reduces their speculative state
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Hive extends the Swarm 
architecture

Swarm hardware additions Hive hardware additions

64-tile, 256-core chip

Mem / IO

M
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Task queue

Task send
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Object map

Task unit structures

Core Core Core Core
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L3 & Dir BankRouter

Tile organization
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Evaluation
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Methodology
Event-driven, Pin-based Simulator 
 Scalability experiments up to 256 cores

• Smaller systems have fewer tiles

9 applications: KCore, Setcover, astar, 
BFS, SSSP, MSF, MIS, MM, RBP

64 Tiles, 256 Cores

Mem / IO

M
em

 /
 IO

Mem / IO

M
em

 / IO

32kB L1 per core 
1MB L2 per tile
256MB LLC 
4 In-order, single-issue 
  scoreboarded cores/tile
64 Task Queue entries/core
16 Commit Queue entries/core
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Software struggles to scale beyond 
100c
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Swarm scales well sometimes
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Parallel 
SW

Swarm
Hive

Hive is up to 2.8x faster than Swarm

Hive is faster than Swarm
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Breaking down Hive vs. Swarm at 
256 cores
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Hive does less work

40%
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Hive reduces queue pressure
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Conclusions and Q+A
• Priority updates are useful operations for ordered algorithms
• The scheduler dependences created by these updates require 

task versioning and mootness detection for speculation 
• Hive extracts parallelism by speculating on data, control, and 

scheduler dependences

Gilead Posluns, Yan Zhu, Guowei Zhang, Mark C. Jeffrey
ISCA 2022
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Extra Slides
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Implementing KCore With Only 
Enqueues

PriorityQueue pq;
for (int v: G.V)
  pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}
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Implementing KCore With Only 
Enqueues
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Implementing KCore With Only 
Enqueues
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Implementing KCore With Only 
Enqueues
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The Scheduler 
Dependence
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Dependences

F D X M W

Register File
Program Counter

Memory System
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Dependences: Data

F D X M W

Register File

Memory System

ADD R1, R0, 
#5
ADD R1, R1, 
R1

STR R1, [R0]
LD R1, [R0]

Program Counter
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Dependences: Data

F D X M W

Register File

Memory System

Program Counter
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Dependences: Control

F D X M W

Register File

Memory System

BEQ R1, #0 
LABEL
ADD R1, R1, R1

Program Counter
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Dependences: Control

F D X M W

Register File

Memory System

Program Counter
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Dependences: Scheduler

F D X M W

Register File

Memory System

STR R5, [PC, 
#4]
ADD R1, R1, R1

Program Counter
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Dependences: Scheduler

F D X M W

Register File

Memory System

Program Counter
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Where's the parallelism in Kcore?

2

2

2

1

1

1

PriorityQueue pq;
for (int v: G.V)
  pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}
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Hive Speculates on Update 
Operations
Hive speculates that all 
update calls will 
commit.

Hive uses eager Task 
versioning.
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Detecting scheduler dependences
• Each new Task version is sent to a tile based on its Object
• When a Task Unit receives a new Task version, it checks for other 

versions with the same Object
• 2 Task versions with the same Object are a potential Scheduler 

Dependence
• The Task Unit compares the VTs of the Tasks and their parents to 

determine which, if any, is Moot.

Scheduler Dependencies Are Cheap To Detect and Handle
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KCore uses priority updates

2
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1

1

PriorityQueue pq;
for (int v: G.V)
  pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}

Prio = 1Prio = 1Prio = 2



The Swarm Architecture[Jeffrey et al, MICRO 
‘15]

Task-Based Execution Model
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Hive tasks and objects
• A Hive program is composed of Tasks and Objects
• Tasks are like Swarm tasks
• Objects are how a Hive program queries and updates tasks

hive::update(
fn,  //what to do
oid, //what to do it to
ts,  //when to do it
args //what to do it with);
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Hive objects contain tasks
• Hive Objects are containers for Tasks
• An Object contains up to one Task, or a Timestamp where a Task used to be

• Hive Programs call init to create a set of objects, which are initially 
empty
• Once created, Objects are identified by an object ID (oid) from 0 to n

hive::init<flags>(n /*number of objects to create*/)
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Binding Hive tasks to objects
• Instead of enqueue, Hive programs can call update to bind a Task 

to an Object.
• Hive programs can also call getTS

to retrieve the Timestamp
of the Task last bound to 
an Object

hive::update(
fn,  //what to do
oid, //what to do it to
ts,  //when to do it
args //what to do it with);

Timestamp ts = getTS(oid);
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Updating a Hive task using its object 
binding
• When a Hive program calls update on an Object with a Task 

already bound to it
• The old Task is replaced by the new one
• The old Task is destroyed

• This allows a Hive program to
update a Task many 
times, but only execute
it once.

hive::update(
fn,  //what to do
oid, //what to do it to
ts,  //when to do it
args //what to do it with);
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The scheduler dependence is 
distinct

Scheduler

Control

Data
ADD R0, 
#5R1
ADD R1, 
R1R1

STR R5[PC, 
#4]
ADD R1, R1R1

BEQ R1, 
#0LABEL
ADD R1, R1R1

Time

Task 
Graphs

Task
Dependence

Converting Scheduler Dependences to Data/Control Is Like Predication
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Hive recognizes speculatively moot 
tasks 
Hive speculates that all 
update calls will 
commit.

Hive uses eager Task 
versioning.

A

Task State
A Running
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Hive recognizes speculatively moot 
tasks 

B

A Task State
A Moot
B Running
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Hive recognizes speculatively moot 
tasks 

C

AB
Task State

A Moot
B Moot
C Running
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Hive discards moot tasks as early as 
possible

C

AB
Task State

A Moot
B Moot
C Running
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Hive discards moot tasks as early as 
possible

C

AB
Task State

A Moot
B Moot
C Running
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Hive discards moot tasks as early as 
possible

C

B
Task State

B Moot
C Running

Moot Tasks Can Be Dropped Without Ever Attempting To Run
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Hive adds little area over Swarm 

Memory
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The scheduler dependence is 
distinct

Scheduler

1
1 21

2
2

Control
Data

Priority

Useful 
Task

1
1 21

2
2

2 3
3

Swarm-like 
Queue

Updateable 
Queue

Priority

Moot
Task

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  if (prios[v] < prio) continue;
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    if (prios[nbr] > prio) {
      prios[nbr]--;
      pq.enqueue(nbr, prios[nbr])
}}

CMP R1, #0
ADDEQ R2,R2R2
ADDNE R2,R3R2

Predication converts scheduler dependences to data/control
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Task versioning enables schedule 
speculation

O2
O3

O5

O4
O6O0

3

1 1

32

Useful 
Task

Moot
Task

Object Table

Task QueueWhen an update arrives 
at a tile, lookup by 
Object ID and determine 
speculative mootness

update(removeV, O1, 1, NULL)

3
2
1New Task

update(removeV, O1, 2, NULL)
21

O1
Task versioning requires a single set of timestamp comparisons on arrival

Moot tasks are discarded before they would have committed if they ran
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Converting sequential code to Hive 
is simple

PriorityQueue pq;
for (int v: G.V)
  pq.enqueue(v, G.degree[v]);
while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}

void removeV(int v, Timestamp ts) {
  coreness[v] = ts;
  for (int nbr : G.edges[v]) {
    Timestamp prev = hive::getTS(nbr);
    if (prev > ts)
      hive::update(&removeV, nbr, prev-1);
}}

int main() {
  hive::init(G.n)
  for (int v: G.V)
    hive::update(&removeV, v, G.degree[v]);
  hive::run();
}
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Hive supports priority updates
• Hive programs contain Tasks and Objects
• Hive Tasks contain a function ptr, timestamp, and arguments
• Tasks appear to execute in Timestamp order

• Hive Objects are containers for Tasks
• An Object holds up to 1 Task

hive::update(
fn,  //what to do
oid, //what to do it to
ts,  //when to do it
args //what to do it with);

Object Table

O2
O3

O5

O4
O6O0

A

hive::update(A, O1, 1, NULL)
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Hive supports priority updates
When a Hive Task updates an Object with a Task already bound, the 
old Task is discarded and never runs

Object Table

O2
O3

O5

O4
O6O0

B

hive::update(A, O1, 1, NULL)hive::update(B, O1, 2, NULL)

A
A

Hive’s abstract PQ has been updated to contain Task B instead of Task A



66

Priority queues are hard to 
parallelize
3 Techniques:
• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Very effective when there is a lot of work per barrier
• Close to sequential when there is little work between barriers

• Relaxed [Aksenov et al. Neurips’20] [Dadu et al. ISCA’21]

• Can always find parallelism
• Not always applicable, and loses efficiency as it scales

• Speculation [Blelloch et al. PPoPP’12] [Jeffrey et al. MICRO’15]

• Always finds parallelism and maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates
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KCore requires priority updates

2

2
2

1

1
1

Task 
Graph

Priority = Remaining Degree
1 2 3

1
1

3
3

2
2
2

1

Task

Dependence

Input 
Graph

Maximum core of a vertex ≈ “importance”
To find: repeatedly remove lowest degree vertex
3 Techniques to extract parallelism:
• Bulk-Synchronous [Dhulipala et al. SPAA‘17] [Dadu et al. ISCA’21]

• Very effective when there is a lot of work per barrier
• Close to sequential when there is little work between 

barriers

• Relaxed [Aksenov et al. Neurips’20] [Dadu et al. ISCA’21]

• Can always find parallelism
• Not always applicable, and loses efficiency as it scales

• Speculation [Blelloch et al. PPoPP’12] [Jeffrey et al. MICRO’15]

• Always finds parallelism and maintains strict ordering
• SW speculation has high overheads
• Existing HW systems do not support priority updates
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Updateable priority queues are 
smaller

1

1

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  if (prios[v] < prio) continue;
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    if (prios[nbr] > prio) {
      prios[nbr]--;
      pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}

3

1
1
2
2

3

1
1
2
2
3
3

Swarm-Like 
Priority 
Queue 2

Updateable 
Priority 
Queue

1

1
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Updateable priority queues are 
smaller

1

1
1

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  if (prios[v] < prio) continue;
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    if (prios[nbr] > prio) {
      prios[nbr]--;
      pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}

1
2
2
3

1
2
2
2
3
3

Swarm-Like 
Priority 
Queue

2
Updateable 
Priority 
Queue2
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Updateable priority queues are 
smaller

2

2
2

1

1
1

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  if (prios[v] < prio) continue;
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    if (prios[nbr] > prio) {
      prios[nbr]--;
      pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}
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3

Updateable 
Priority 
Queue

Swarm-Like 
Priority 
Queue
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Updateable priority queues are 
smaller

2

2
2

1

1
1

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  if (prios[v] < prio) continue;
  coreness[v] = prio;
  for (int nbr : G.edges[v]) 
    if (prios[nbr] > prio) {
      prios[nbr]--;
      pq.enqueue(nbr, prios[nbr])
}}

while (!pq.empty()) {
  int v, int prio = pq.dequeueMin();
  coreness[v] = prio;
  for (int nbr : G.edges[v])
    if (pq.getPrio(nbr) > prio)
      pq.decrementPrio(nbr);
}

Swarm-Like 
Priority 
Queue

Updateable 
Priority 
QueueEarly exiting tasks are Moot: they might as well not run at all

2
3
3
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Hive provides ordered tasks with 
updates
• Hive programs contain Tasks and Objects
• Hive Tasks contain a function ptr, timestamp, and arguments
• Tasks appear to execute in Timestamp order

• Hive Objects are containers for Tasks
• An Object holds up to 1 Task

hive::update(
fn,  //what to do
oid, //what to do it to
ts,  //when to do it
args //what to do it with); Object Table

Object fn ts args

O0 NULL

O1 A 0 NULL

O2 A 1 NULL

O3 B 5 1,2

O4 NULL

O5 A 2 NULL

O6 NULL

hive::update(&B, O3, 5, 1, 2);

hive::update(&A, O1, 0);
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Hive provides ordered tasks with 
updates
When a Hive Task updates an Object with a Task already bound, the 
old Task is discarded and never runs

Object Table

hive::update(B, O2, 2, 0, 1)
Object fn ts args

O0 NULL

O1 A 0 NULL

O2 A 1 NULL

O3 B 5 1,2

O4 NULL

O5 A 2 NULL

O6 NULL

Hive’s schedule can be updated, and replaced tasks do not run

O2 B 2 0,1

O2 A 1 NULL
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See the paper for…
• A formal scheduler dependence definition
• The relation used to determine Mootness
• Recovery from Mootness misspeculation 
• Detecting Mootness in a virtualized queue
• Object table implementation
• And more…
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