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Why Al on Resource-Constrained Platform
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Motivation I: Limitations of Dominant Deep
Learning Frameworks for Low-Performance Devices
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Motivation |l: Drawbacks of Prior Works
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Comparison of GENN and prior works.



| Research Goal: Develop a more portable and

flexible PyTorch conversion tool that can better
serve Al research on low-performance

platforms.




Proposed Solution: GENN
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» No external library dependencies, OS constraints, or dynamic memory

allocation requirements.
» Quantization operations require zero floating-point operations.



GENN Benchmark
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» Eight deep learning models that are commonly used for loT devices.
» Generated by GENN converter and can be used out of the box.



Evaluation |: Simulation Results

Simulation on the Thumbulator -- a cycle-accurate simulator for the ARM Cortex-MO+ CPU,
running at 24 MHz.

Significant speedup of quantized models due to the lack of HW support for floating point
operations on the Cortex-MO+ CPU.
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Evaluation |l: Real Device Results

Evaluation on the STM32-NUCLEO-F411RE board with a 32-bit ARM Cortex-M4 CPU, 128 KB
of RAM and 512 KB of flash memory, 100 MHz.

Quantization and sparsity reduce the memory by 44% and 60%.
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Next Steps & Potential Values

Compare the inference time and memory usage of GENN
benchmark to the experiment results of the prior works.

Support the quantized sparse model conversion.

Enrich GENN converter’s features to further improve its
usability.
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