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Why AI on Resource-Constrained Platform
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Motivation I: Limitations of Dominant Deep 
Learning Frameworks for Low-Performance Devices

PyTorch, 
TensorFlow

Platform 
Dependencies
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(Our Work)

CMSIS-NN uTensor
TensorFlow
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Processor

Mbed OS
Dynamic Memory 

Allocation

Auto Generation ✓  ✓ ✓

DL Framework PyTorch None TensorFlow TensorFlow

Usability Easy Very Hard Medium Hard

Sparsity ✓   

Comparison of GENN and prior works. 
3

Motivation II: Drawbacks of Prior Works



Research Goal: Develop a more portable and 
flexible PyTorch conversion tool that can better 
serve AI research on low-performance 
platforms.
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Proposed Solution: GENN

➢ No external library dependencies, OS constraints, or dynamic memory 
allocation requirements.

➢ Quantization operations require zero floating-point operations.

PyTorch Model

Input Dataset
.c

.h

.h .h

C Dataset

Pre-defined DNN 
Functions in C

Standalone C Models;
Efficient on resource-
constrained platforms

Efficient on high-
performance devices

GENN Convertor

DNN layer extraction, 
Layer-wise parameter 
and weight collection

Dataset Conversion

Support FL32, INT16, and 
sparse model conversion
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GENN Benchmark
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➢ Eight deep learning models that are commonly used for IoT devices.
➢ Generated  by GENN converter and can be used out of the box. 6



Evaluation  I: Simulation Results

Simulation on the Thumbulator -- a cycle-accurate simulator for the ARM Cortex-M0+ CPU, 
running at 24 MHz.

Significant speedup of quantized models due to the lack of HW support for floating point 
operations on the Cortex-M0+ CPU.
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Evaluation II: Real Device Results
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Evaluation on the STM32-NUCLEO-F411RE board with a 32-bit ARM Cortex-M4 CPU, 128 KB 
of RAM and 512 KB of flash memory, 100 MHz.

Quantization and sparsity reduce the memory by 44% and 60%.



Next Steps & Potential Values

Compare the inference time and memory usage of GENN 
benchmark to the experiment results of the prior works.

Support the quantized sparse model conversion.

Enrich GENN converter’s features to further improve its 
usability.
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