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1 Problem Statement
Deep learning (DL) is experiencing increased interest in resource-
constrained devices [15]. However, modern DL frameworks, e.g.,
TensorFlow and PyTorch, are designed and optimized for high-
performance platforms [13]. For usability, most frameworks use
interpreted languages and require extensive libraries like Nvidia
CUDA; executing them on resource-constrained devices remains
challenging [6]. Therefore, it is crucial to enable more memory and
environment-friendly AI for platforms such as low-end Internet of
Things (IoTs), simulators, and high-level synthesis (HLS).

2 Related Work and Motivation
While prior work implements DL models in C/C++ [2, 4, 9] to elim-
inate the resource constraints, they suffer from several drawbacks:
(1) Due to the memory or operating system (OS) requirements,

some tools can only run on certain systems, which limits porta-
bility and flexibility. For instance, CMSIS-NN [9] is board-specific
and only works for Arm Cortex-M processors. uTensor [2] re-
quires Mbed OS, making both simulation and real device exe-
cution difficult. TensorFlow Lite Micro [4] employs dynamic
memory allocation, which is not supported by HLS tools such
as Vivado [17].

(2) Some tools only provide C/C++ DNN layer functions and do not
support automatic C model generation; this limits usability as
users have to manually port customized models into compiled
languages.

(3) Many frameworks support TensorFlow to C conversion but fail
to support increasingly popular PyTorch [5].

(4) More straightforward tools exhibit worse inference time as they
are not well-optimized while the better-performing ones are
not intuitive to use [14].

(5) While floating point (FP) and quantized DNNs have been inves-
tigated, implementation in C of PyTorch sparsity has not been
explored.

GENN CMSIS-NN [9] uTensor [2] TensorFlow
Lite Micro [4]

Platform Requirement None Arm Cortex-M
processors

Mbed OS Dynamic Memory
Allocation

Auto-Generation ✓ × ✓ ✓

DL Framework PyTorch None TensorFlow TensorFlow
Usability Easy Very Hard [14] Medium [14] Hard [14]
Sparsity ✓ × × ×
Table 1: GENN and prior work comparison. The Platform Require-
ment refers to the conditions required to run models on the tools.
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Figure 1: Overall pipeline of converting PyTorch model into stan-
dalone C package.

3 Design
Based on the insights above, we develop GENN, an automatic
PyTorch-to-C model conversion pipeline (Figure 1) with a high
degree of generality, flexibility, and usability.

GENN converts a trained FP, quantized, or sparse FP PyTorch
network into standalone C for resource-constrained DNN inference.
The converter processes the model layer by layer and stores the
PyTorch parameters and weight tensors in an ordered dictionary.
After looping over the entire network, the GENN converter prints
out the parameters and weights into C format and creates a main file
that declares the DNN layers. The generated C code, together with
our pre-defined GENN DL functions, runs on a variety of platforms
as it has no external library dependencies and performs no dynamic
memory allocation. To save memory, we replace floating point
multiplications and division with bit-shifting operations [9] for our
quantized models.

To demonstrate the effectiveness of GENN, we convert eight
models from different IoT applications [1, 15] into C as a benchmark
suite (Table 2). For each model, we provide the FP, int16, and sparse
versions. For sparse models, 90% of their weights are pruned.

4 Evaluation
We evaluate GENN on a simulator and a hardware platform. We use
Thumbulator [7], a cycle-accurate simulator for the ARM Cortex-
M0+ CPU, running at 24 MHz, for simulation. For real hardware
evaluation, we use an STM32-NUCLEO-F411RE board which has a
32-bit ARM Cortex-M4 CPU, running at 100 MHz and with 128 KB
of RAM and 512 KB of flash memory. We only run five out of the
eight benchmark models on the real device, as the rest do not fit
into the on-chip memory.
Simulator Results: Figure 2 illustrates the simulation inference
time. The quantized models show a significant speedup. This is
because the ARM-M0+ CPU that the Thumbulator models does
not have floating-point hardware; the floating-point operations are
emulated in software, leading to a significant slowdown. Also, we
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Dataset Model Architecture Type Accuracy (%) Size (KB)

MNIST [10]

MLP Linear → ReLU → Linear
Float 96.79 397.54
Quant 96.77 198.77
Sparse 94.38 159.34

CNN (Conv2D→MaxPool2D → ReLU)×2
→ Linear→ ReLU→ Linear

Float 98.73 85.31
Quant 98.36 42.66
Sparse 96.85 17.46

Electrocardiogram (ECG) [12] MLP (Linear→ PReLU)×13→
Linear→ Sigmoid

Float 97.32 487.42
Quant 96.00 243.71
Sparse 95.00 100.28

Keyword Spotting (KWS) [16]

MLP (Linear→ ReLU)×3 →
AdaptiveAvgPool1d→ Linear

Float 95.05 8535.00
Quant 94.89 4267.50
Sparse 94.89 1711.80

CNN
(Conv1D→ ReLU)×2 → Linear

→ Linear → ReLU →
AdaptiveAvgPool1d→ Linear

Float 96.17 729.25
Quant 96.00 364.63
Sparse 91.53 146.98

DS_CNN Conv1D → (Conv1D→ ReLU)×8
→ AdaptiveAvgPool1d→ Linear

Float 98.40 109.76
Quant 98.00 54.88
Sparse 93.29 25.98

Human Action Recognition
(HAR) [8]

MLP (Linear → ReLU)×2 → Linear
Float 90.87 6674.02
Quant 91.75 3337.01
Sparse 89.00 1339.63

CNN (Conv2D→MaxPool2D → ReLU)×2
→ ( Linear→ ReLU)×2 → Linear

Float 91.08 8553.23
Quant 91.08 4276.61
Sparse 82.35 3425.43

Table 2: Models offer by GENN benchmark suite (DS CNN: depthwise separable convolutional neural network).
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Figure 2: Inference time for GENN DNNs on Thumbulator.

can directly run our models on the simulator, implying the ease of
use and generality of GENN.

Hardware Results: Figures 3 and 4 illustrate the memory footprint
and inference time of the DNNs. On average, quantization and
sparsity reduce the memory footprint by 44% and 60%, respectively.
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Figure 3: Memory footprint for GENN DNNs.
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Figure 4: Inference time for GENN DNNs on real device.

For inference, we see a slight increase in runtime for the quan-
tized model. This is because the quantized models require extra
quantization and dequantization operations during inference, which
adds overhead. For the sparse models, we store only the indices and
values of the non-zero weights. Thus the overhead of this irregular
indexing adds to the runtime of the sparse models. Optimizing the
runtime of sparse models is a focus of our future work.

We were unable to get CMSIS-NN [9] and TensorFlow Lite
Micro [4] to work out of the box. However, prior work shows
that standalone C models can outperform CMSIS-NN [9] and Ten-
sorFlow Lite Micro [4] in both inference time and memory foot-
print [3, 11, 18].

5 Conclusion
Memory and platform restrictions lead to difficulties running DNNs
on resource-constrained devices. We develop GENN, an automatic
PyTorch model to C converter with good usability and flexibility
that allows more constraint-free low-end AI. We open-source our
codebase and plan to add more features to GENN, including sup-
porting quantized sparse models and adding more advanced DL
layer functions.
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