
GENN: Enable Flexible and Efficient AI for Resource-Constrained
Platforms

Yan Zhu, Kaija Mikes, Karthik Ganesan, Natalie Enright Jerger
University of Toronto
Toronto, Ontario

1 Problem Statement
Deep learning (DL) is experiencing increased interest in resource-
constrained devices [15]. However, modern DL frameworks, e.g.,
TensorFlow and PyTorch, are designed and optimized for high-
performance platforms [13]. For usability, most frameworks use
interpreted languages and require extensive libraries like Nvidia
CUDA; executing them on resource-constrained devices remains
challenging [6]. Therefore, it is crucial to enable more memory and
environment-friendly AI for platforms such as low-end Internet of
Things (IoTs), simulators, and high-level synthesis (HLS).

2 Related Work and Motivation
While prior work implements DL models in C/C++ [2, 4, 9] to elim-
inate the resource constraints, they suffer from several drawbacks:
(1) Due to the memory or operating system (OS) requirements,

some tools can only run on certain systems, which limits porta-
bility and flexibility. For instance, CMSIS-NN [9] is board-specific
and only works for Arm Cortex-M processors. uTensor [2] re-
quires Mbed OS, making both simulation and real device exe-
cution difficult. TensorFlow Lite Micro [4] employs dynamic
memory allocation, which is not supported by HLS tools such
as Vivado [17].

(2) Some tools only provide C/C++ DNN layer functions and do not
support automatic C model generation; this limits usability as
users have to manually port customized models into compiled
languages.

(3) Many frameworks support TensorFlow to C conversion but fail
to support increasingly popular PyTorch [5].

(4) More straightforward tools exhibit worse inference time as they
are not well-optimized while the better-performing ones are
not intuitive to use [14].

(5) While floating point (FP) and quantized DNNs have been inves-
tigated, implementation in C of PyTorch sparsity has not been
explored.

GENN CMSIS-NN [9] uTensor [2] TensorFlow
Lite Micro [4]

Platform Requirement None Arm Cortex-M
processors

Mbed OS Dynamic Memory
Allocation

Auto-Generation ✓ × ✓ ✓

DL Framework PyTorch None TensorFlow TensorFlow
Usability Easy Very Hard [14] Medium [14] Hard [14]
Sparsity ✓ × × ×
Table 1: GENN and prior work comparison. The Platform Require-
ment refers to the conditions required to run models on the tools.

PyTorch Model

Input Dataset

GENN Convertor

.c

Efficient on high-

performance platforms
Standalone C Models;

Efficient on resource-

constrained platforms

DNN layer extraction,

Layer-wise parameter

and weight collection

Dataset Conversion .h

.h .h

C Dataset

Layer, Parameter,

Weight scripts

Pre-defined DNN

Functions in C

Figure 1: Overall pipeline of converting PyTorch model into stan-
dalone C package.

3 Design
Based on the insights above, we develop GENN, an automatic
PyTorch-to-C model conversion pipeline (Figure 1) with a high
degree of generality, flexibility, and usability.

GENN converts a trained FP, quantized, or sparse FP PyTorch
network into standalone C for resource-constrained DNN inference.
The converter processes the model layer by layer and stores the
PyTorch parameters and weight tensors in an ordered dictionary.
After looping over the entire network, the GENN converter prints
out the parameters and weights into C format and creates a main file
that declares the DNN layers. The generated C code, together with
our pre-defined GENN DL functions, runs on a variety of platforms
as it has no external library dependencies and performs no dynamic
memory allocation. To save memory, we replace floating point
multiplications and division with bit-shifting operations [9] for our
quantized models.

To demonstrate the effectiveness of GENN, we convert eight
models from different IoT applications [1, 15] into C as a benchmark
suite (Table 2). For each model, we provide the FP, int16, and sparse
versions. For sparse models, 90% of their weights are pruned.

4 Evaluation
We evaluate GENN on a simulator and a hardware platform. We use
Thumbulator [7], a cycle-accurate simulator for the ARM Cortex-
M0+ CPU, running at 24 MHz, for simulation. For real hardware
evaluation, we use an STM32-NUCLEO-F411RE board which has a
32-bit ARM Cortex-M4 CPU, running at 100 MHz and with 128 KB
of RAM and 512 KB of flash memory. We only run five out of the
eight benchmark models on the real device, as the rest do not fit
into the on-chip memory.
Simulator Results: Figure 2 illustrates the simulation inference
time. The quantized models show a significant speedup. This is
because the ARM-M0+ CPU that the Thumbulator models does
not have floating-point hardware; the floating-point operations are
emulated in software, leading to a significant slowdown. Also, we

MICRO Student Research Competition ’23, October 28, 2023, Toronto, ON Yan Zhu, Kaija Mikes, Karthik Ganesan, Natalie Enright Jerger

Dataset Model Architecture Type Accuracy (%) Size (KB)

MNIST [10]

MLP Linear → ReLU → Linear
Float 96.79 397.54
Quant 96.77 198.77
Sparse 94.38 159.34

CNN (Conv2D→MaxPool2D → ReLU)×2
→ Linear→ ReLU→ Linear

Float 98.73 85.31
Quant 98.36 42.66
Sparse 96.85 17.46

Electrocardiogram (ECG) [12] MLP (Linear→ PReLU)×13→
Linear→ Sigmoid

Float 97.32 487.42
Quant 96.00 243.71
Sparse 95.00 100.28

Keyword Spotting (KWS) [16]

MLP (Linear→ ReLU)×3 →
AdaptiveAvgPool1d→ Linear

Float 95.05 8535.00
Quant 94.89 4267.50
Sparse 94.89 1711.80

CNN
(Conv1D→ ReLU)×2 → Linear

→ Linear → ReLU →
AdaptiveAvgPool1d→ Linear

Float 96.17 729.25
Quant 96.00 364.63
Sparse 91.53 146.98

DS_CNN Conv1D → (Conv1D→ ReLU)×8
→ AdaptiveAvgPool1d→ Linear

Float 98.40 109.76
Quant 98.00 54.88
Sparse 93.29 25.98

Human Action Recognition
(HAR) [8]

MLP (Linear → ReLU)×2 → Linear
Float 90.87 6674.02
Quant 91.75 3337.01
Sparse 89.00 1339.63

CNN (Conv2D→MaxPool2D → ReLU)×2
→ (Linear→ ReLU)×2 → Linear

Float 91.08 8553.23
Quant 91.08 4276.61
Sparse 82.35 3425.43

Table 2: Models offer by GENN benchmark suite (DS CNN: depthwise separable convolutional neural network).

0

100

200

300

400

500

600

700

800

900

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

MNIST MLP MNIST CNN KWS DS CNN ECG MLP KWS CNN KWS MLP HAR MLP HAR CNN

In
fe

re
n

ce
 t

im
e

(m
ill

io
n

s
o

f
cy

cl
es

)

Models

Figure 2: Inference time for GENN DNNs on Thumbulator.

can directly run our models on the simulator, implying the ease of
use and generality of GENN.

Hardware Results: Figures 3 and 4 illustrate the memory footprint
and inference time of the DNNs. On average, quantization and
sparsity reduce the memory footprint by 44% and 60%, respectively.

GENN: Enable Flexible and Efficient AI for Resource-Constrained Platforms MICRO Student Research Competition ’23, October 28, 2023, Toronto, ON

0
100
200
300
400
500
600
700

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Q
u

an
ti

ze
d

Sp
ar

se

MNIST MLP MNIST CNN KWS DS CNN ECG MLP KWS CNN

To
ta

l m
em

o
ry

 u
se

 (
K

B
)

Models

RAM Flash Memory

Figure 3: Memory footprint for GENN DNNs.

1

10

100

1000

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Fl
o

at

Q
u

an
ti

ze
d

Sp
ar

se

Q
u

an
ti

ze
d

Sp
ar

se

MNIST MLP MNIST CNN KWS DS CNN ECG MLP KWS CNN

In
fe

re
n

ce
 t

im
e

(i
n

 m
ill

io
n

s
o

f
cy

cl
es

)
 lo

g
sc

al
e

Models

Figure 4: Inference time for GENN DNNs on real device.

For inference, we see a slight increase in runtime for the quan-
tized model. This is because the quantized models require extra
quantization and dequantization operations during inference, which
adds overhead. For the sparse models, we store only the indices and
values of the non-zero weights. Thus the overhead of this irregular
indexing adds to the runtime of the sparse models. Optimizing the
runtime of sparse models is a focus of our future work.

We were unable to get CMSIS-NN [9] and TensorFlow Lite
Micro [4] to work out of the box. However, prior work shows
that standalone C models can outperform CMSIS-NN [9] and Ten-
sorFlow Lite Micro [4] in both inference time and memory foot-
print [3, 11, 18].

5 Conclusion
Memory and platform restrictions lead to difficulties running DNNs
on resource-constrained devices. We develop GENN, an automatic
PyTorch model to C converter with good usability and flexibility
that allows more constraint-free low-end AI. We open-source our
codebase and plan to add more features to GENN, including sup-
porting quantized sparse models and adding more advanced DL
layer functions.

References
[1] Salma Abdel Magid, Francesco Petrini, and Behnam Dezfouli. 2020. Image Classi-

fication on IoT Edge Devices: Profiling and Modeling. Cluster Computing 23, 2
(jun 2020), 1025–1043. https://doi.org/10.1007/s10586-019-02971-9

[2] Michael Bartling. 2019. uTensor TinyML AI inference library. https://github.
com/uTensor/uTensor.

[3] Usman Ali Butt. 2021. On the deployment of Artificial Neural Networks (ANN)
in low-cost embedded systems. https://webthesis.biblio.polito.it/19692/

[4] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li,
Nick Kreeger, Ian Nappier, Meghna Natraj, Shlomi Regev, Rocky Rhodes, Tiezhen
Wang, and Pete Warden. 2021. TensorFlow Lite Micro: Embedded Machine
Learning on TinyML Systems. arXiv:2010.08678 [cs.LG]

[5] Google. 2023. PyTorch vs. Tensorflow Interest over time. https://trends.
google.com/trends/explore?date=today%205-y&q=%2Fg%2F11gd3905v1,%2Fg%
2F11bwp1s2k3

[6] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. 2016.
Operating Systems for Low-End Devices in the Internet of Things: A Survey.
IEEE Internet of Things Journal 3, 5 (Oct 2016), 720–734. https://doi.org/10.1109/
JIOT.2015.2505901

[7] Matthew Hicks. 2016. Thumbulator: Cycle accurate ARMv6-m instruction set
simulator. https://bit.ly/2RJX36A.

[8] Reyes Ortiz Jorge, Anguita Davide, Ghio Alessandro, Oneto Luca, and Parra
Xavier. 2012. Human Activity Recognition Using Smartphones.

[9] Liangzhen Lai, Naveen Suda, and Vikas Chandra. 2018. CMSIS-NN: Efficient
Neural Network Kernels for Arm Cortex-M CPUs. arXiv:1801.06601 [cs.NE]

[10] Yann LeCun. [n. d.]. https://pytorch.org/vision/main/generated/torchvision.
datasets.MNIST.html#torchvision.datasets.MNIST

[11] Jianjia Ma. 2020. Neural Network on Microcontroller. https://github.com/
majianjia/nnom

[12] George Moody and Roger Mark. 2005. MIT-BiH Arrhythmia Database. https:
//www.physionet.org/content/mitdb/1.0.0/

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv:1912.01703 [cs.LG]

[14] Christos Profentzas, Magnus Almgren, and Olaf Landsiedel. 2021. Performance
of Deep Neural Networks on Low-Power IoT Devices. In Proceedings of the Work-
shop on Benchmarking Cyber-Physical Systems and Internet of Things (Nashville,
Tennessee) (CPS-IoTBench ’21). Association for Computing Machinery, New York,
NY, USA, 32–37. https://doi.org/10.1145/3458473.3458823

[15] Tausifa Jan Saleem and Mohammad Ahsan Chishti. 2021. Deep learning for the
internet of things: Potential benefits and use-cases. Digital Communications and
Networks 7, 4 (2021), 526–542. https://doi.org/10.1016/j.dcan.2020.12.002

[16] Pete Warden. 2017. Launching the speech commands dataset. https://blog.
research.google/2017/08/launching-speech-commands-dataset.html

[17] Xilinx. [n. d.]. Vivado Design Suite User Guide. https://docs.xilinx.com/v/u/en-
US/ug902-vivado-high-level-synthesis

[18] Raphael Zingg and Matthias Rosenthal. 2020. Artificial Intelligence on Mi-
crocontrollers. https://github.com/InES-HPMM/Artificial_Intelligence_on_
Microcontrollers/blob/master/Artificial_Intelligence_on_Microcontrollers.pdf

https://doi.org/10.1007/s10586-019-02971-9
https://github.com/uTensor/uTensor
https://github.com/uTensor/uTensor
https://webthesis.biblio.polito.it/19692/
https://arxiv.org/abs/2010.08678
https://trends.google.com/trends/explore?date=today%205-y&q=%2Fg%2F11gd3905v1,%2Fg%2F11bwp1s2k3
https://trends.google.com/trends/explore?date=today%205-y&q=%2Fg%2F11gd3905v1,%2Fg%2F11bwp1s2k3
https://trends.google.com/trends/explore?date=today%205-y&q=%2Fg%2F11gd3905v1,%2Fg%2F11bwp1s2k3
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/JIOT.2015.2505901
https://bit.ly/2RJX36A
https://arxiv.org/abs/1801.06601
https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html#torchvision.datasets.MNIST
https://pytorch.org/vision/main/generated/torchvision.datasets.MNIST.html#torchvision.datasets.MNIST
https://github.com/majianjia/nnom
https://github.com/majianjia/nnom
https://www.physionet.org/content/mitdb/1.0.0/
https://www.physionet.org/content/mitdb/1.0.0/
https://arxiv.org/abs/1912.01703
https://doi.org/10.1145/3458473.3458823
https://doi.org/10.1016/j.dcan.2020.12.002
https://blog.research.google/2017/08/launching-speech-commands-dataset.html
https://blog.research.google/2017/08/launching-speech-commands-dataset.html
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://github.com/InES-HPMM/Artificial_Intelligence_on_Microcontrollers/blob/master/Artificial_Intelligence_on_Microcontrollers.pdf
https://github.com/InES-HPMM/Artificial_Intelligence_on_Microcontrollers/blob/master/Artificial_Intelligence_on_Microcontrollers.pdf

	1 Problem Statement
	2 Related Work and Motivation
	3 Design
	4 Evaluation
	5 Conclusion
	References

